
Synthesis of Some Substituted Adamantanetriones Mohammed Giasuddin Ahmed,^{**} Syed M. Iqbal Moeiz,^{*} Syeda Asghari Ahmed,^{*} Mohammed Abu Hena,^{*} Yoshisuke Tsuda^b and Paul Sampson^c

^aDepartment of Chemistry, University of Dhaka 1000, Bangladesh ^bFaculty of Pharmaceutical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920, Japan ^cDepartment of Chemistry, Kent State University, P.O. Box No. 5190, Kent, Ohio 44242-0001, USA J. Chem. Research (S), 1998, 282 J. Chem. Research (M), 1998, 1082–1095

Following the same general procedure employed for the synthesis of substituted adamantane-2,4-diones which we reported previously^{6,7} we now herein report the synthesis of substituted adamantane-2,4,6-triones **6a** and **6b**.

The morpholine enamine **4** of ethyl 1-phenyl-4-oxocyclohexane-1-carboxylate **3** prepared following the reported procedure,⁹ reacted with acryloyl and crotonoyl chlorides giving 1-phenyladamantane-2,4,6-trione **6a** and 10-methyl-1phenyladamantane-2,4,6-trione **6b**^{\dagger} respectively in good yields. The structures of the adamantane derivatives were established from their spectral properties. Preparation and characterization of oximes **10** and **11** of compounds **6a** and **6b** afforded additional evidence for their structures (Scheme 1).

The crystalline compounds **6a** and **6b** gave informative ¹H NMR spectral data in $CDCl_3$. It was possible to assign all the protons by running two-dimensional $(^{1}H_^{-1}H$

^{*}To receive any correspondence.

†In defining axial and equatorial positions in these polycyclic compounds the Snatzke¹⁰ convention was followed. COSY) NMR spectra and the coupling constants were determined from the one-dimensional spectra. In both the compounds **6a** and **6b** the bridgehead protons at positions **3** and **5** appeared downfield due to the adjacent carbonyl groups. The protons at these positions in **6b** were shifted slightly upfield in comparison to **6a** due to the anisotropic effect of the CH₃ group in the 10 position. The methylene protons of positions 8 and 9 individually appeared as singlets in each of **6a** and **6b**. In each of these compounds the protons at position 8 were more deshielded than those at position 9 due to the phenyl group at position 1 (δ 0.16 in the case of **6a** and δ 0.13 in the case of **6b**). The stereo-chemistry at position 10 in **6b** is evident from the relatively high δ value of the protons at this position which is indicative of its equatorial conformation.^{6,7} This in turn indicates the axial conformation of the 10-CH₃ group in **6b**.

Similar observations were made for the shielding and deshielding effects on carbon at different positions of compounds **6a** and **6b**. The chemical shifts and substituent pattern of carbons in **6b** were assigned with the help of ${}^{1}\text{H}-{}^{13}\text{C}$ COSY and DEPT NMR spectroscopy. By analogy with **6b** the positions of the carbon atoms in **6a** were ascertained. The shielding and deshielding of different carbons were explained on the basis of the substitution chemical shift effect and the γ -anti effect.⁸ This further confirmed the stereochemistry at position 10 for compound **6b**. In their mass spectra compounds **6a** and **6b** showed molecular ions at m/z 254 and 268 respectively.

Techniques used: IR, ¹H and ¹³C NMR, and mass spectrometry

References: 10

Schemes: 2

Table 1: Proton NMR spectral data for compounds 6a and 6b

Table 2: Carbon-13 NMR spectral data for compounds 6a and 6b

Table 3: Carbon-13 NMR spectral data for compound 3

Received, 24th September 1997; Accepted, 14th January 1998 Paper E/7/069211

References cited in this synopsis

- 6 A. K. M. F. Huque, M. Mosihuzzaman, S. A. Ahmed, M. G. Ahmed and R. Andersson, J. Chem. Res., 1987, (S) 214; (M) 1701 and references cited therein.
- 7 M. G. Ahmed, A. K. M. F. Huque, S. A. Ahmed, M. Mosihuzzaman and R. Andersson, *J. Chem. Res.*, 1988, (S) 362; (M) 2815 and references cited therein.
- 8 H. Duddeck and H. Klein, Tetrahedron, 1977, 33, 1971.
- 9 G. Stork, A. Brizzolara, H. Landesman, J. Szmuskovicz and R. Terral, J. Am. Chem. Soc., 1963, 85, 207.
- 10 G. Snatzke and D. Marquarding, Chem. Ber., 1967, 100, 1710.